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Abstract. We study, in the framework of the high-frequency Floquet theory, the one-dimensional system
consisting of an electron interacting with a symmetric two δ-functions potential in the presence of an
intense monochromatic homogeneous electric field. Most of the results concern the attractive case. They
include the dependence of the bound states energies of the dressed potential and of some of its resonances
positions on the electric field parameter α0 (the classical free electron quiver motion amplitude) and on
the distance between the two centers and the description of the evolution from resonances to laser induced
levels via two antibound states. The repulsive case is described briefly.

PACS. 32.80.-t Photon interactions with atoms – 32.90.+a Other topics in atomic properties
and interactions of atoms with photons – 03.65.Ge Solutions of wave equations: bound states

1 Introduction

In the last 15 years, the unusual atomic behaviour in the
presence of high-frequency, high-intensity electromagnetic
fields, as predicted by the Floquet theory [1], led to a vari-
ety of investigations, most of them theoretical. The most
unexpected prediction, found in the framework of high fre-
quency Floquet theory (HFFT), is the phenomenon of sta-
bilization. This phenomenon is the tendency of the atomic
system to remains stable against ionization. In the Floquet
formalism the stabilization is revealed by the tendency of
the imaginary part of the quasienergies to decrease if the
intensity of the electromagnetic field is high enough. For a
recent review of this subject and the need for further work
in the domain of superintense laser-atom physics, we refer
to the paper of Gavrila [2].

The results supplied by the Floquet theory prove them-
selves to be useful for the description of the atoms interac-
tion with not only monochromatic electromagnetic fields
introduced adiabatically, but also with shorter ones, if a
multicomponent Floquet theory is adopted [3].

In this paper we report our results, based on HFFT,
concerning a very simple one-dimensional system, a par-
ticle in the potential

V (x) = −γ

2
[ δ(x − a) + δ(x + a)] , a > 0, (1)

subject to the action of a monochromatic electric field
described by the vector potential

A(t) = A0 cosωt. (2)
a e-mail: flor@barutu.fizica.unibuc.ro

All equations and numerical results will be expressed in
atomic units.

The HFFT theory, introduced by Gavrila and
Kaminski [4], is a limit form of the Floquet theory, corre-
sponding to very high frequency ω and intensity I; from a
mathematical point of view, the equations correspond to
the limit ω → ∞, I → ∞, but with a finite value for the
ratio

α0 ≡
√

I

ω2
· (3)

The quantity α0 represents the classical free electron
quiver motion amplitude in the presence of a plane wave of
frequency ω and intensity I. The HFFT limit has already
been studied not only for some simple 1D systems [5], but
also for realistic systems as the hydrogen atom [6] and
the hydrogen molecular ion [7]. The validity of HFFT was
analysed in several particular cases, such as the Gaus-
sian potential [8,9], and the one-dimensional δ-function
potential [9,10]. It appears that the information obtained
from HFFT is useful in more elaborated studies based on
exact Floquet calculations.

The electron in the potential (1) and in the absence of
the electromagnetic field can be found several times in the
literature. It was presented, for instance, as a 1D model
for a diatomic ion [11,12]. The most studied problem
for the potential (1) was the elastic scattering, includ-
ing the calculation of transmission and reflection coeffi-
cients [13], but also a wavepacket description of the scat-
tering was given, accompanied by a calculation of several
resonances [14,15]. Depending on the value of the param-
eter η ≡ a γ, the system has one or two bound states, but,
in contrast to other 1D systems studied up to now, it has
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a wealthy set of resonances that are relatively close to the
real axis for large values of the parameter η.

Recently [16,17], the potential (1) was invoked as a
suitable approximation for describing the ground state
of a 1D δ-function potential dressed by an external
monochromatic electric field.

Most results we present correspond to the attractive
case (γ > 0 in Eq. (1)), but some results corresponding
to the repulsive case are present in Sections 2 and 4. In
Section 2 we give a brief description of the system in the
absence of the electromagnetic field. We use a constant
value γ = 2 and the separation 2a between the two points
where the δ-functions are located is a parameter we vary in
this section and in the following ones. Then, we describe
in Section 3 the dressed potential and its bound states
as function of the field parameter α0, defined in (3), for
the range 0 ≤ α0 ≤ 50. Section 4 studies the trajecto-
ries of several resonances of the dressed potential. Their
evolution with increasing α0 is followed in some detail,
illustrating the transition from a resonance to a light in-
duced level, via two antibound levels. As it is known [18],
beyond the HFFT approximation, the dressed energy lev-
els become quasienergies with a non-zero imaginary part.
Our calculation, based on the first correction to HFFT,
leads to the results presented in Section 5 for the case of
the ground state.

2 The system in the absence
of the electromagnetic field

Several results for the system described by the parti-
cle under the force derived from (1) for the attractive
case, γ > 0, can be found in the textbook of Galindo
and Pascual [19] and in several papers already quoted in
the introduction [11–14]. For the purposes of our paper,
we describe here the solutions of the time-independent
Schrödinger equation.

We write the energy parameter E in Schrödinger equa-
tion as E = k2/2. Two values of k are attached to each E,
unless a choice is specified.

To each value of E, real or complex, one can attach two
solutions, characterized solely by a definite parity and by
an “adequate” normalization. At x = ±a the solutions are
continuous and their derivative undergoes a well-defined
discontinuity.

For 0 ≤ x ≤ a, the even solution u0(E; x) and the odd
solution u1(E; x) are

u0(E; x) = cos kx, u1(E; x) =
1
k

sin kx, 0 ≤ x ≤ a. (4)

For x > a, they can be written in terms of two exponential
functions as

ul(E; x) = C
(+)
l (k) eikx + C

(−)
l (k) e−ikx,

x > a, l = 0, 1. (5)

The coefficients, which depend on k and have the property

C
(+)
l (−k) = C

(−)
l (k) , l = 0, 1, (6)

are the analogues of the 3D Jost functions [20].
In the following, we consider only the solutions (5) in

the case Re k ≥ 0. They will have a pure outgoing be-
haviour at large distances, if, for x > a, only the second
exponential in (5) will be present, i.e., for

C
(−)
l (k) = 0, l = 0, 1, Re k ≥ 0. (7)

Explicitly written, the conditions take the simple forms

2ka = ±iη (e2ika ± 1) , η ≡ a γ, (8)

with the upper and lower sign for the even and odd case,
respectively.

The condition can be fulfilled only for discrete sets of
values for k, different for the two cases. There are three
types of solutions corresponding to

(a) bound states: k = iκb, κb > 0,
(b) antibound states: k = −iκa, κa > 0,
(c) resonances (Gamow-Siegert poles): Im k < 0,

Re k �= 0.

We notice the scaling property

En(γ, a) =
1
a2

En(η, 1) = γ2 En(1, η), (9)

where a label n has been attached to any value of E of
the three types of solutions.

For bound states one gets, with k = iκb,

2κba = η (1 ± e−2 κba). (10)

The equation with the upper sign always has a solution,
while the equation with the lower sign has a solution only
if η ≥ 1. The solution for η = 1 is in fact κb = 0.

The equation for antibound states (k = −iκa) has no
solution in the even case, and has one solution in the odd
case, if η ≤ 1.

For further reference, we present in Figure 1 the energy
levels E0 (full thick line, marked by b0) and E1 (full thin
line, marked by b1), and the antibound state energy Ea

(dashed line, marked by a1), for the potential strength
γ = 2, as function of the location a. The calculation is done
for the electron and the energies are given in Rydbergs.
For a = 2 and γ = 2, one finds E0(2, 2) = 0.517, which is
not far from the binding energy of the hydrogen molecular
ion Eion = 0.603. The graph confirms previous results [12,
14]: (i) for a = 0 the ground level starts from E(2, 0) = −2,
a value identical to the unique energy level of the single
δ-function potential V (x) = −2 δ(x), the system to which
our system reduces in this case; (ii) the odd level exists
only for η ≥ 1 and it starts from 0, its value for η = 1; (iii)
both transcendental equations (10) have the same solution
for a → ∞, leading to the energy E0(2,∞) = E1(2,∞) =
−0.5. From Figure 1 one sees that a quasidegeneracy of
the levels is present for rather low values of a. For η = 1,
the only solution of equation (10) (with the lower sign) for
bound states and of the equation for antibound states is
κ = 0, so the antibound and the odd bound state meet at
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Fig. 1. The energy levels E0 (full thick line, marked b0), E1

(full thin line, marked b1) and the antibound state energy Ea

(dashed line, marked a1), for the two δ-functions potential (1),
with the potential strength γ = 2, as function of the loca-
tion a, measured in first Bohr radius. The energies are given
in Rydbergs.
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Fig. 2. The trajectories of the first
ten Gamow poles in the ka-complex
plane. The marked points correspond
to η = 10−5 (circle), η = 10−3 (di-
amond), η = 10−1 (triangle), η = 4
(star), η = 10 (square). (a) The attrac-
tive case. The poles are denoted by rn,
with n = 2, . . . , 11. (b) The repulsive
case. The poles are now denoted by rn,
with n = 0, . . . , 9.

a = 1/γ = 0.5. With decreasing a, the antibound energy
shifts abruptly towards −∞.

The graphs for other values of γ can be obtained from
that corresponding to γ = 2, by the use of the scaling
law (9).

The resonances are found from the general equa-
tions (8). With the notation

ka = α − iβ , α > 0 , β > 0 , (11)

each of the equations (8) splits into two coupled real
equations for α and β:

sin(2α) e2β = ∓ 2α

η
, 1 ± cos(2α) e2β = −2β

η
· (12)

The upper and lower signs correspond to even and odd
solutions of the Schrödinger equation, respectively. In both
cases, α and β satisfy the equation

4(α2 + β2) − 4ηβ = η2(e4β − 1), (13)

which is not sufficient to determine them, but which shows
that both types of poles are located on the same curve.
For β 	 1 this curve becomes a portion of a parabola. We
shall call the poles even or odd, according to the property
of the attached solutions.

For large values of η the solution for α approaches a
value from the set (n−1/2)π in the even case, and a value
from the set n π in the odd case, with n a positive integer.
There is only one even pole with α ∈ ((n − 1/2)π, n π))
and only one odd with α ∈ (n π, (n+1/2)π)). For reasons
explained later, the resonances will be denoted kn, starting
with n = 2.

In Figure 2a we present the trajectories in the com-
plex k-plane of the first ten resonances. The full lines are
trajectories of “even” poles, and the dashed ones of “odd”
poles. The marked points correspond (from below to top)
to values of 10−5, 10−3, 10−1, 4 and 10 for η, as indicated
in the legend. The vertical bars mark multiples of π/2.
We use the convenient variables Re (kn a), Im (kn a). A
comparison of our Figure 2a with Figure 1 from [21], cor-
responding to a family of square wells of variable depths
and widths, shows similarities in the tendency of the poles
to go to infinity approaching the vertical bars for η → 0.
For a = 0 one gets the case of a one δ-function potential,
which has no resonances at all. For η → ∞ the resonances
reach the real axis at multiples of π/2.

In the repulsive case (γ < 0 in Eq. (1)) the resonances
are denoted by rn, with n = 0, 1, ... The attached solu-
tions of the Schrödinger equation have the parity of n.
In Figure 2b we present several resonances trajectories
in the absence of the field. The first resonance r0 exists
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Fig. 3. The dressed potential in equation (15) for γ = 2 and a = 2: (a) α0 = 0.5; (b) α0 = 2; (c) α0 = 10.

only for η > 0.74. This resonance and its correspondent
in the third quadrant meet on the imaginary axis of the
complex k-plane at k = −0.32 i and generate two anti-
bound states, present for η < 0.74. The resonance rn has
n π/2 < Re (kn a) < (n + 1)π/2.

3 The dressed potential and its energy levels

In the high-frequency limit of the Floquet theory, the
complex quasienergies reduce to real quantities coinci-
dent with the energy levels of the particle in the so-called
dressed potential V0(α0; x), defined as the average on a
period T of the translated potential,

V0(α0; x) =
1
T

∫ T

0

V (x − α0 sin ωt) dt. (14)

In our case, the dressed potential can be expressed as a
sum of two terms, each representing the dressed potential
attached to a δ-function potential, located in a or in −a,

V0(α0; x) = V δ
0 (α0; x − a) + V δ

0 (α0; x + a) , (15)

with

V δ
0 (α0; x) = −γ

π

1√
α2

0 − x2
, |x| < α0, (16)

and V δ
0 (x) = 0, |x| > α0.

Figure 3 illustrates the behaviour of the dressed po-
tential for γ = a = 2 and three values of α0: 0.5, 2 and 10.

For α0 �= a, the dressed potential is singular in four
points, x = −a ± α0, x = a ± α0. For α0 < a, the
dressed potential is 0 in three regions of the x-axis:
(−∞,−a − α0), (−a + α0, a − α0) and (a + α0,∞). For
α0 ≥ a, the middle region disappears. For α0 = a, the
dressed potential is singular at x = −2a, 0 and 2a. For
α0 > a, the three adjacent regions in which the potential
is not zero are (−a − α0, a − α0), (a − α0,−a + α0) and
(−a + α0, a + α0). Both terms in (15) contribute in the
region (a − α0,−a + α0).

We notice the following scaling property:

E(γ, α0, a) = γ2 E(1, α0, η). (17)
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Fig. 4. Bound and antibound levels of the dressed po-
tential for γ = 2 and a = 2: even bound states−full
thick lines, odd bound states−full thin lines, even antibound
states−thick dashed/dotted lines, odd antibound states−thin
dashed/dotted lines.

By integrating the Schrödinger equation attached to (15)
we have determined the energy levels for different values of
the potential parameter a and 0 < α0 < 50. The method
of integration is an adaptation of that presented in the
case of one δ-function potential [9]. The case γ = a = 2 is
shown in Figure 4, for 0 < α0 < 50, representing bound
and antibound levels. The curves b0 and b1 are the only
ones present in the absence of the field. As it is clear from
Figure 1, at the values we have chosen for γ and a the
two energies are almost equal in the absence of the field.
With the increase of α0 the levels become distinct, then get
close again and for α0 > 15 they are practically coincident.
The ground level changes monotonically with α0, except
for the vicinity of α0 = a. The graph shows five light in-
duced levels, b2, . . . , b6 and ten antibound states, denoted
by an and a′

n (n = 2, . . . , 6), all light induced. The bound
levels with attached even/odd states are represented by
full thick/thin lines, the antibound levels an and a′

n, with
attached even/odd states by dashed thick/thin lines, and
dotted thick/thin lines, respectively. The values of α0 at
which the studied light induced levels appear are 1.90,
7.77, 18.12, 30.46 and 45.22. The ten antibound states
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Fig. 5. The probability density of local-
ization in the case γ = 2 and a = 2 for
the first four dressed states: (a) α0 = 0;
(b) α0 = 0.5; (c) α0 = 2; (d) α0 = 10.

appear at the values 1.67, 6.6, 17.18, 29.95 and 44.91
for α0. The antibound states denoted by a′

n exist in narrow
regions of values of α0. The antibound states are directly
linked with resonances. More about this is explained in
Section 3, in connection with Figure 7.

Finally, in Figure 5 we present graphs of the probabil-
ity density of localization |vn|2 in the region 0 < x < 20
for the first four dressed bound states, with vn the eigen-
function corresponding to the energy En. The figures cor-
respond to γ = a = 2. Figure 5a describes the situation
in the absence of the field (α0 = 0), where, as well for
α0 = 0.5 in Figure 5b, only the levels b0 and b1 exist. The
curves in Figure 5a display the discontinuity of the first
derivative of the eigenfunction at x = a. This discontinu-
ity is not present for the dressed potential eigenfunctions.
The behaviour of the maximum of the probability density
for the b0 state follows closely the behaviour of the po-
tential in Figure 3: with increasing α0 it starts to switch
from x close to 2 toward lower values. For α0 = 2 (Fig. 5c)
this maximum has reached the origin and the distribution
is narrow. For larger values of α0 the distribution becomes
broader; it is shifted toward α0−a and another maximum
will develop at α0 + a. This second maximum is not vis-
ible in Figure 5d corresponding to α0 = 10 (notice the
different scale on the vertical axis in Figure 5d compared
with the others). At α0 = 2 (Fig. 5c) the light induced
level b2 is present. At α0 = 10 the maximum of b1 is also
practically at x = α0 − a = 8, as that of b0, and that
of b2 is near α0 + a = 12. In conclusion, the distributions
indicate the presence of the singular points of the dressed
potential, and one can see the tendency to a polychotomic
behaviour of the states. The picture complicates for other
light induced states, being influenced by the presence of
nodes.

4 The dressed potential resonances

We have determined also several resonances of the dressed
potential (15). In Figure 6a we display the trajectory of
the first five resonances in the ka-complex plane, in the
attractive case. We present results for γ = 2, as we did for
the energy levels. The resonances start at α0 = 0 from the
positions denoted by a star in Figure 2a, corresponding
to η = 4. The notation rn, with n ≥ 2, was adopted in
order to have the same index attached to the resonance
as to the light induced level it generates for a well de-
fined value of α0. So, there is no resonance denoted by r1.
The trajectories of the resonances remind of those found
for the case of a single δ-function potential [17]. With in-
creasing α0, the resonances go below the bisectrix of the
fourth quadrant and later reach the imaginary axis. Each
resonance rn meets then a pair pole located in the third
quadrant, and the two evolve in two antibound levels an

and a′
n. Then, with further increase of α0, the antibound

level denoted a′
n becomes a bound level and the one de-

noted an remains antibound. This evolution is shown in
detail for the first resonance r2 in the insets of Figure 7.

Figure 6b presents the evolution of resonances r0, ..., r5

in the repulsive case. The starting points, marked by a
star, correspond to α0 = 0 and can be found in Figure 2b.
Each trajectory ends up in the origin for large values of α0.

Coming back to the attractive case, we present
Figure 7. In the main figure the real and imaginary part
of the energy of the resonances r2 to r6 are represented
separately (Figs. 7a and 7b, respectively). With increas-
ing α0, the real part of each resonance energy decreases,
becoming negative. In the case of r2, the real part of the
energy vanishes for α0 = 1.51. The two antibound states
replacing the resonance and its pair in the third quadrant
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Fig. 6. Trajectories of the even (full
line) and odd (dashed line) resonances
in the complex plane ka in their de-
pendence of the field parameter α0, for
γ = 2: (a) the attractive case; (b) the
repulsive case.

0 5 10 15
0

2

4

6

8

R
e 

(E
) 

(a
.u

.)

0 0.5 1 1.5 2 2.5 3 3.5 4
α0 (a.u.)

-0.2

-0.1

0

0.1

0.2

R
e 

(E
) 

(a
.u

.)

0 0.5 1 1.5 2 2.5 3 3.5 4
α

0
 (a.u.)

-0.25

-0.2

-0.15

-0.1

-0.05

0

Im
 (

E
) 

(a
.u

.)

0 5 10 15
α

0
 (a.u.)

-3

-2.5

-2

-1.5

-1

-0.5

0

Im
 (

E
) 

(a
.u

.)

r
2

b
2

a
2

a
,

2

r
2

(a)

(b)

Fig. 7. The dependence of the resonances energy of the pa-
rameter α0. (a) The real part of the resonance energy as func-
tion of α0. (b) The imaginary part of the resonance energy as
function of α0. (Insets) The evolution of the resonance r2 in
two antibound states, one of which becomes the light induced
level b2.

appear for α0 = 1.67 and coexist until α0 = 1.84 when
the antibound level a′

2 becomes the energy level b2.
We have studied also the changes in the resonances

trajectories connected with the increase of the two
δ-functions separation. At a = 5 we have found resonance
trajectories similar to those in Figure 5, with one excep-
tion, the trajectory of the resonance r3. In order to de-
scribe it, we present Figure 8. In Figure 8a the trajectory
is shown in the k-plane. Starting from the point A, corre-
sponding to α0 = 0, the trajectory approaches the imagi-
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Fig. 8. The resonance r3 and its pair in the case γ = 2 and
a = 5. (a) The trajectory in the complex k-plane. (b) The real
part of the energy in the range 2.6 ≤ α0 ≤ 3.8.

nary axis of the k-plane and reaches it at α0 = 3. There
it meets the pair pole from the third quadrant and two
antibound states move, one first upward (from B to C),
then downward (from C to D), the other one first down-
ward from B to C′, then up to D. From D, the poles leave
the imaginary axis. The resonance pole reaches again the
imaginary axis at α0 = 6.7 where, finally, it becomes a
light induced antibound state. Figure 8b displays the be-
haviour of the real part of the resonance energy k2

3/2 in the
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range (2.6, 3.8) for α0. At α0 = 2.6 the resonance reaches
the bisectrix of the fourth quadrant, so the real part of the
energy vanishes. Then it takes negative values. The reso-
nance energy is real between the points B and D, where
the resonances at E and E∗ (* means complex-conjugate)
are replaced by antibound states. Then, up to α0 = 3.68,
the resonance is below the bisectrix of the fourth quad-
rant. The evolution after crossing it is that represented in
Figure 8b.

5 The width of the dressed ground state level

The results given by the equations of HFFT can be im-
proved by calculating successive corrections given by the
iterative procedure developed by Gavrila [18]. In the first
order, the energy levels undergo a shift and acquire a
width. The width of a level depends not only of α0, but
also on the frequency ω. The width of a dressed level de-
noted by En is [18]

ΓHF
n =

∞∑
N=1

ΓHF
N,n = 2π

∞∑
N=1

∫ ∞

−∞
δ(k2/2 − Nω − En)

× |〈vn|VN |Φ(k)〉|2 dE, (18)

with VN the Fourier components of the translated po-
tential, vn the energy eigenfunction attached to En,
and |Φ(k)〉 the continuum energy eigenfunction corre-
sponding to the energy E = k2/2, normalized in the en-
ergy scale.

We refer here only to the ground state width, present-
ing it in Figure 9, as function of α0, for the case a = 2 and
two frequencies, ω = 2 and ω = 4. The full curves corre-
spond to a number Nmax = 120 for ω = 2, and Nmax = 100
for ω = 4 terms included in the series (18), and the dashed
curves represent the partial width ΓHF

1,1 .
The behaviour of ΓHF

1 illustrates the quasistationary
(adiabatic) stabilization, as defined in [2]: a decrease in an
oscillatory manner after a critical value of α0.

We have investigated to what extent Born approxima-
tion is valid for the partial widths. In Born approximation
the continuum energy eigenfunction is replaced by a plane
wave. A comparison of the numerical value of ΓHF

1,N with
its Born approximation indicates that for N > 10 at ω = 2
one can safely use the Born approximation for the partial
widths. At larger values of ω the agreement was found for
even smaller values of N (N = 8 for ω = 4).

6 Conclusion

In this paper we have reported the results of a system-
atic study of solutions of the Schrödinger equation for the
dressed symmetric two δ-functions potential, attractive or
repulsive, in the range 0 ≤ α0 ≤ 50 of the external field
parameter α0 defined in equation (3). The evolution of
the energy levels and of a number of resonances with the
increasing of α0 was followed in detail. We have presented

0 1 2 3 4 5
α

0
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0

0.05
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Fig. 9. The total width ΓHF
1 and the partial width ΓHF

1,1 of
the level E0 for the frequencies ω = 2 (full thin line−total
width, dashed thin line−partial width) and ω = 4 (full thick
line−total width, dashed thick line−partial width).

examples of the evolution from a resonance to a bound
state, as the mechanism for the apparition of light induced
states. As in the case of the one δ-function potential we
have studied previously [17], the apparition of a light in-
duced state is preceded by the existence of two antibound
states, one of which exists only in a small region of val-
ues of α0, extended from the value at which the resonance
meets its pair pole and two antibound states emerge to the
value corresponding to the LIS apparition. For the ground
state we have illustrated the tendency of the wavefunction
to a polychotomic behaviour, and we have calculated the
width.

The results could serve as a guide in a study based on
Floquet theory beyond the HFFT approximation.
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